28#ifndef OPM_EQUIL_INITIALIZER_HPP
29#define OPM_EQUIL_INITIALIZER_HPP
31#include <opm/grid/common/CartesianIndexMapper.hpp>
33#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
34#include <opm/material/fluidstates/BlackOilFluidState.hpp>
57template <
class TypeTag>
67 enum { numPhases = FluidSystem::numPhases };
68 enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
69 enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
70 enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
72 enum { numComponents = FluidSystem::numComponents };
73 enum { oilCompIdx = FluidSystem::oilCompIdx };
74 enum { gasCompIdx = FluidSystem::gasCompIdx };
75 enum { waterCompIdx = FluidSystem::waterCompIdx };
77 enum { dimWorld = GridView::dimensionworld };
78 enum { enableDissolution = Indices::compositionSwitchIdx >= 0 };
79 enum { enableBrine = getPropValue<TypeTag, Properties::EnableBrine>() };
80 enum { enableVapwat = getPropValue<TypeTag, Properties::EnableVapwat>() };
81 enum { enableSaltPrecipitation = getPropValue<TypeTag, Properties::EnableSaltPrecipitation>() };
82 enum { enableDisgasInWater = getPropValue<TypeTag, Properties::EnableDisgasInWater>() };
83 enum { enableDissolvedGas = Indices::compositionSwitchIdx >= 0 };
84 static constexpr EnergyModules energyModuleType = getPropValue<TypeTag, Properties::EnergyModuleType>();
91 energyModuleType == EnergyModules::ConstantTemperature,
92 (energyModuleType == EnergyModules::FullyImplicitThermal || energyModuleType == EnergyModules::SequentialImplicitThermal),
96 enableSaltPrecipitation,
101 template <
class EclMaterialLawManager>
103 EclMaterialLawManager& materialLawManager)
106 const auto& vanguard = simulator.vanguard();
107 const auto& eclState = vanguard.eclState();
109 unsigned numElems = vanguard.grid().size(0);
117 CartesianIndexMapper>;
119 Initializer initialState(materialLawManager,
123 vanguard.cartesianMapper(),
124 simulator.problem().gravity()[dimWorld - 1],
125 simulator.problem().numPressurePointsEquil());
129 for (
unsigned int elemIdx = 0; elemIdx < numElems; ++elemIdx) {
133 unsigned regionIdx =
simulator_.problem().pvtRegionIndex(elemIdx);
134 fluidState.setPvtRegionIndex(regionIdx);
137 for (
unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
138 if (FluidSystem::phaseIsActive(phaseIdx))
139 fluidState.setSaturation(phaseIdx, initialState.saturation()[phaseIdx][elemIdx]);
140 else if (Indices::numPhases == 3)
141 fluidState.setSaturation(phaseIdx, 0.0);
144 if constexpr (enableDissolvedGas) {
145 if (FluidSystem::enableDissolvedGas())
146 fluidState.setRs(initialState.rs()[elemIdx]);
147 else if (Indices::gasEnabled && Indices::oilEnabled)
148 fluidState.setRs(0.0);
149 if (FluidSystem::enableVaporizedOil())
150 fluidState.setRv(initialState.rv()[elemIdx]);
151 else if (Indices::gasEnabled && Indices::oilEnabled)
152 fluidState.setRv(0.0);
155 if constexpr (enableVapwat) {
156 if (FluidSystem::enableVaporizedWater())
157 fluidState.setRvw(initialState.rvw()[elemIdx]);
161 if constexpr (energyModuleType != EnergyModules::NoTemperature)
162 fluidState.setTemperature(initialState.temperature()[elemIdx]);
165 for (
unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
166 if (!FluidSystem::phaseIsActive(phaseIdx))
168 fluidState.setPressure(phaseIdx, initialState.press()[phaseIdx][elemIdx]);
170 const auto& b = FluidSystem::inverseFormationVolumeFactor(fluidState, phaseIdx, regionIdx);
171 fluidState.setInvB(phaseIdx, b);
173 const auto& rho = FluidSystem::density(fluidState, phaseIdx, regionIdx);
174 fluidState.setDensity(phaseIdx, rho);
176 if constexpr (energyModuleType == EnergyModules::FullyImplicitThermal || energyModuleType == EnergyModules::SequentialImplicitThermal) {
177 const auto& h = FluidSystem::enthalpy(fluidState, phaseIdx, regionIdx);
178 fluidState.setEnthalpy(phaseIdx, h);
183 if constexpr (enableBrine)
184 fluidState.setSaltConcentration(initialState.saltConcentration()[elemIdx]);
187 if constexpr (enableSaltPrecipitation)
188 fluidState.setSaltSaturation(initialState.saltSaturation()[elemIdx]);
Routines that actually solve the ODEs that emerge from the hydrostatic equilibrium problem.
Contains the classes required to extend the black-oil model by energy.
Declares the properties required by the black oil model.
Definition: CollectDataOnIORank.hpp:49
Definition: InitStateEquil.hpp:691
Computes the initial condition based on the EQUIL keyword from ECL.
Definition: EquilInitializer.hpp:59
EquilInitializer(const Simulator &simulator, EclMaterialLawManager &materialLawManager)
Definition: EquilInitializer.hpp:102
const Simulator & simulator_
Definition: EquilInitializer.hpp:204
std::vector< ScalarFluidState > initialFluidStates_
Definition: EquilInitializer.hpp:206
BlackOilFluidState< Scalar, FluidSystem, energyModuleType==EnergyModules::ConstantTemperature,(energyModuleType==EnergyModules::FullyImplicitThermal||energyModuleType==EnergyModules::SequentialImplicitThermal), enableDissolution, enableVapwat, enableBrine, enableSaltPrecipitation, enableDisgasInWater, Indices::numPhases > ScalarFluidState
Definition: EquilInitializer.hpp:98
const ScalarFluidState & initialFluidState(unsigned elemIdx) const
Return the initial thermodynamic state which should be used as the initial condition.
Definition: EquilInitializer.hpp:198
Declare the properties used by the infrastructure code of the finite volume discretizations.
Definition: blackoilbioeffectsmodules.hh:43
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type::type GetPropType
get the type alias defined in the property (equivalent to old macro GET_PROP_TYPE(....
Definition: propertysystem.hh:233
The Opm property system, traits with inheritance.